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The authors have determined the laws for development of spatial unsteady temperature 
fields in a semiinfinite nontransparent body heated by a Gaussian laser beam. 

In a thermophysical experiment one finds electron [i] and laser [2] sources of local 
heating of a body surface as original and efficient methods of generating a directed heat flux. 
These new sources for generating a heat flux have now a secure place in the practice of in- 
vestigating thermophysical properties of substances~ In particular, reference [i] has des" 
cribed various methods of applying electron heating in calorimetric measurements of heat cap- 
acity, integral emissivity, heat conduction and other heat transfer characteristics. 

The aim of this paper is to describe analytically the laws for development of spatial 
unsteady temperature fields in a semiinfinite body whose surface is subject to the local ac- 
tion of laser radiation. We shall assume that the power of the laser radiation Wo(T) inci- 
dent on the body surface not only does not disintegrate the material, but also does not cause 
nonlinear variation of the thermophysical properties with temperature in the vicinity of the 
heated spot. 

Most laser beams of diameter 2ro have azimuthal symmetry in the transverse section, with 
the greatest intensity on the axis. With increase of distance r from the beam axis the in- 
tensity wo(T) = Wo(T)/(~r~) falls off according to an exponential law, i.e., 

~z, o (r, ~) = u2 o ('~) exp - -  , (1) 

where wo(r, T) is the intensity (density) of the laser radiation (W/m~). 

The value of r for which the radiative intensity (the energy per unit area S = zr~) decreases by 
a factor of e compared with the intensity on the beam axis is called the transverse dimension 
of the beam, ro [2]. Generally speaking, a ro varies from point to point along the beam axis. 
At some point within the resonator, called the neck of the beam, a Gaussian beam has a minimum 
dimension ro min �9 Below we shall assume that a beam of diameter 2to, is focused (normally) 
on the body surface, and that its intensity on the body surface varies according to the law 
(i). However, the density of heat flux absorbed by the body itself (more accurately by its 
planar boundary surface) will depend on the emissivity of the body surface, characterized by 
the emittance or the absorptance. Therefore, we write a boundary condition of the second kind 
at the surface (z = 0, 0 < r < ro) in the form 

Oz o ~ o , =  0~'o (~)exp - -  , ( 2 )  
Z~O 

where 0 < i is a dimensionless parameter characterizing the absorptance of the body (the equal 
sign can--be assumed for a perfect blackbody [3])o 

In the region of representations of the excess temperature O--ic(r , p, s) Of a semiinfinite 
body (where p and s are, respectively, the parameters of the infinite Fourier cosine and La- 
place transformations, i = I, 2) one must find the solution of the following system of differ- 
ential equations (we choose the origin of the cylindrical coordinates at the central point 
r = z = 0 of the circular heated spot on the body surface) [4] : 

( ) Oa01c 1 001c pwo (s) exp - -  (0 ~< r < t o ) ,  ( 3 )  
Or 2 + r Or p2 + @1~ -- t, -~o 
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Ord + 
1 0-~,2~ (pa+  s l g ) o ~  
r Or , a ! " 

= 0 (r > ro) (4) 

with the boundary conditions 

z%~ (to, p, s ) =  7D.~ (to, p, s), (5)  

OG~. (ro, p, s) O@--~.c (to, P, s) 
Or Or ' (6) 

aGe(o ,  p, s) 
Or = O, (7) 

a@~c(oo, p, s) = O. 
Or 

(8) 

The general integrals of Eqs. (3) and (4) can be written in the form [4] 

e~o (~, s) G (r) 4 r l / p ~  + + G (r) Ko r + 

O--2e(, , p, s,:Cjo (r Wfp  2--}-4) 2cC'Ko (r k/pZ--} --~)(r>ro) ' 

(9) 

(i0) 

where lo(X), Ko(X) are modified Bessel functions. 

We find the constants of integration C,(r) and Ca(r) by the method of variation of con- 

stants [5]: 

- / , '  4 )  C l ( f ) =  O[/)o(S--) xexp  --~o Ko x ] 27 dx+B 1, ( 1 1 )  
X o 

(s) 
G (r) = '--" 

V ~- ) 
- - . j ' x e x p  - -  r--~o I o x p2 + s__ dx + B.,, 

0 a ,  

where B, and B2 are constants of integration; and wo(s) is the Laplace-transformed value of 
the specific power (per unit area) of the laser source. 

Using the boundary conditions at r = 0 and r = ~ we find that the constants C3 = B2 = O. 
Thus, the solutions for ~Ic(r , p, s) and ~2c(r, p, s) take the following form: 

=  '0i I'o +--7) 
X S X exp ( x2 r 

0 
r 

Using the matching conditions (equality) of temperatures and their gradients on the cylin- 
drical surface r = ro inside the body, we find that 

+) 
BI = - -  - -  • t" x2K1( x p2 + exp -- dx, 

e)~ ] /  pz "i- sa lr2 / pz + sa "o 

(14) 
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.o,.o~.,,.(.0,/..+~). ,~o,~, T (v ' . .  ~) ( '4 )  
C~= 1 ' i  ~ @ ~r~ / __s X 0 X2]l X @--a-, exp - -  dx. 

e;~ p2 _~ a b /92 + a 

Substituting the values of the contants BI and C4 into the desired solutions and apply- 
ing the conversion formula for a cosine Fourier transformation, we obtain the following ex- 
pressions for the representations (only the Laplace) of the excess temperatures @x(r, z, s) 
and 8~(r, z, s): 

~t (r, z, s) = O~o (s____.~) exp -- exp - - - -  ]/~ -- 

b WE . V E  

. ,~/ s ) ( d  ) 2ro~o (s) t' cos__pz ( s' 
aeL "o | ],//p2 _]- ~ K1 ro pz + Io r pZ Jr- a d p - -  

�9 a 

4p~o (s) cos pz Io r V I s - -  dxdp-4- 

I/ 
~x,-~ ~ - r + _is r + -a-, x ,3*~K' ,"~ l / p2 + ..~ exp 

a 

( ( -t) ' ") Ko ~1/r247215 i x2I, x I / / / P Z +  exp [--~0 dxdp (O<r<ro) ;  (15) 
r 

4~o (s) ~ ~o~ p z 

!1 /  s -}-i St~.ro 2 p2 -!-. a 

- ~  ( r  -t) ( v '  s)'~~ c o s .  ~ O"-~ (r, z, s) -- 2ropw o (s) cos pz Ko r pZ nt_ • la re pB + ~ dp Jr- :rtb'~ s 
r s , i/.' ae~, ~ pZ + T ' + Y  

ro ( _ _ . . , )  . ~o (r f ;~+s )~ .-,. (~ t/,~+ s)o." ~ ~.~ ~ ~o,. (z6) 

For our further investigations we shall be interested in the solution for 8,(0, z, T) on 
the axis r = 0 (z > O, T > 0), and also the solutions for O:(r, O, T) and 82(r, O, T) at z = 0 
(r > O, T �9 0), which can be written in the following form: 

e 1(0, z, x )=L- ' [@l(O,  z, s)l = p L -~[~o(s) '1 T -W - x  

( ' ~ ' ) ] - '  ,_.-,[~, ' 
X exp "l /a  eb ~ X 

X exp - -  -I/a- V s  + ~ exp 

V r2--}-z z re ]/s- - - +  

x e x p \  4a / 2 -1 /a  ] e x p ( - - t  z) dt 
z__ + ro 1/7" 
ro 2 Y-~'- 

S exp (--  t 2) = 
+ r. r J /  2 

ro 2 Y~ 

_ (..,,-,~ '~ [erf (VTo + 
X L -x [ two (s) exp \ ~ - ]  \ ro 

_ (z~) pro exp 

~,'--"-T ,"o "V~] 
+ 2 q / a / - -  

x 

x (17) 
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since 

-ga-a 

•  - -  4a---~- 1 - - - - e  exp - - - - 4 a ~  d~, 

{ ( L -~ exp (as) eric l / ~  + 2 "Va- = 

[ "l/&- exp -- { 1  + V U (%/}-- [~), 
V~- (~ + ~) k 

X 

where U(X) is the symmetric unit function [5]. 

For z = 0 

L- ' {exp ( r~s I ] / s  ~,--4-a--) eric ( ro r o 1 
d )" 2a -Wa-~ (v -t- ~ a ]  

For the central point (r = z = O) of the heated spot we have 

�9 [ , ( r0 ] Pr 2 Wo (T --- Eo) ><, 1 --- --7- exp 4-~ dE, 
d 

where 

1/e = exp (--  1). (18) 

The expression to determine the temperature 8,(r, 0, T) = Ta(r, 0, z) --To inside the 
heated spot  (0 <__ r < ro) of the  body su r f ace  (z = O) has the  form: 

O~(r, O, ~)=  ~ p exp ( - - 4 ]  i .  r~ / ~'o (T--~)_V~ dE-- 

1 
---- oo 2 r~ --m-- - -  

n ~ 0  tn=O 

T __lZ_m m 

x ~wo(~--~)~ 
0 

1 9 
-W-~ br 2 

ro W ,n a- I m I 
exp 8a~ ~ - T  ' T ' - T  +T _ ] 

1 

n = O  m = O  , 0 

x] ("-P• x 

3 1 
--m-- ~- __--2nq-m-- T 

- -  r n /  a~ x 

2 
ro 

• ; ! e x p [ - - (  r @ +  4 - ~ )  

2 9 ~ A~,~ 
+ " 2 ~ ~.~ (n 1) r~ bro -~- n ~ O  m=O 

(19) 

m 3 

f. --n+ -~- -- T • Wo(~--~)~ exp 
0 

8a~ W ., a ., 1 ( r2 ) x2~+ 3 - Y ~  4' 2 a ' , - ~ )  • exp --  dxd~, 
' 0 

where 

B ,,,m 
= (--  1).,_:~(2rn-- 1)!!. A~ m 

�9 m n ~ ' 2 4 n!tn! 

~9m-- 1)tl 
4nn!m! (n -- m)! 
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5 x 2n+3 exp 
0 

d x  ~ ; -Va' r 2 ? n + 2 ,  ro b-- " 

2 
r0  m - - I  X �9 

d x  

1 ( - -  1)a ( 4a.~" " 
( l__~__k__~_a~ 1 ) = k! . n _ _ m _ k / \ _ . ~ o  + ! ,  , 

(20) 

---~-- + 
r~ 

and Wk,B(X) , Lk(X) , y(~, X) are, respectively, the Whittaker, multiterm Laguerre, and incom- 

plete gamma functions [4, 6-8]. 

The expression to determine the temperature O2(r, 0, ~) = T2(r, 0, x) --To outside the 
heated spot (r > re) on the body surface (z = 0) can be written in the form: 

3 

@,(r, 0, ~)-- 1 P ~ • 
" -I/2-~- eb ~ " n=O m=O 

1 

Wo ('c -- ~) ~ 2 4 exp • )< 

r z ) 1 9 

3 1 
�9 . 2 n - - m +  

rt=O m~O 

(21) 

rn 3 

? n + 2, w o(x-.~)~ 2 4 exp X W ~ s ~ 1 d~. 
":< ' --~r~ o 8a~ n - 7 + T , - - V - T  

The solutions (17)-(21) are written in the form of quadratures on an infinite interval. By 
assigning the form of the function Wo(T) and carrying out the uncomplicated integration of the 
expressions obtained we shall obtain a series of partial solutions for the temperature fields 
0i(r , z, T) (i = i, 2) in the semiinfinite body (in the thermal sense) heated by a laser source. 
We postulate that wo(T) = wo = const. Then the expressions obtained above for the temperature 
fields Oi(r , z, ~) have the following form: 

for r = 0, z + 0, T > 0 

@~ (0,KiZ, Fo) =--~-P { arctg (2 ]/'F-o)exp ( zZ/r~)• 

(22) 

x [ 1  1 exp( 1 4F~ 2 ___) x It02 4Fo')] ~ arctg('l/~exp( zz/r~ z z 1 ( 1 +  -~--~ ) e x p ( - - + ) ] d ~ } ;  
- - 7 -  - - -  0 e 

for r = z = 0 (Fo > 0) 

Ki ----7 4Fo e J" ~-Zarctg(q/f)exp --.--~-- d~j, (23) 
0 
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where 

a~ , 0~ (0, 0, r) 
K i =  w~176 ; F o = - - 7 ;  01(0,  0, F o ) =  

%To ro To 

A graph of Eq. (23) is shown in Fig. i. 

,Fo T) Calculation of an integral of the form j" ~ - 2 a r c t g ( q / ~ e x p  (-- 1 d~ 
o 

out, expanding (/~) in the series: 

is not difficult to carry 

4 F o  

1 

(4Fo) ~ +  u 1 IV ~ , ~ I 

( - -  1)~ 2 n §  1 exp 8Fo , _~ 4 '  T - V  
n ~ O  

for 2 VFS-  I; 
n 

n ~ O  

[ 

4 ;< 

• exp (-- -- 1 W 1 ~ a for 2 q/F-o> 1. 
8Fo ~ +  4 '  2 "4 

(24) 

The distribution of relative temperature outside the heated spot (r > ro, z = 0) on the 
body surface can be written in the form: 

3 I 

_ ~=o n §  1 

• §  n §  exp r~ 8Fo 

x W  m I m 1 9 
n-- _~ ~ '  5 + V  r~ 4Fo 

where 

( 2) I ( )+11()] n§ ,to =(n§ l exp 7o 7o (25) 

On the basis of the dependences obtained for the temperature fields in a semiinfinite 
body heated by a laser source we can propose a number of methods of determining the thermo- 
physical characteristics and also the absorptance of the body (for known values of the thermo- 
physical properties), if in a thermophysical experiment we accomplish local heating of the 
body surface by a laser source (up to temperature values in the vicinity of the heated spot 
which do not cause disintegration (removal of mass) and do not cause nonlinearity of the therm- 
ophysical properties). In regard to possible values of the laser radiative power, it may vary 
over a wide range from several milliwatts to tens of kilowatts. Some types of C02 lasers can 
achieve power of tens of kilowatts, operating in the continuous regime, and the peak power of 
pulsed solid-state lasers reaches 1012 Watt [2]. 

From the viewpoint of using lasers in a thermophysical experiment to create a direction- 
al heat flux there is no real possibility of reaching high power levels, but it is possible 
to control this power, i.e., the beam power, referred to unit area, of radiation falling on 
the surface. By focusing coherent laser radiation by means of lenses and mirrors we can 
achieve very diverse values of the radiative power density directed to the surface of a non- 
transparent test surface, 

The simplest method of determining the thermophysical properties and also the absorptance 
of a body (or the reflectance (i -- p) is based on a knowledge from experiment of the excess 
temperature 01(0, 0, T) of a function of time ~ at the central point (r = z = 0) of the heated 
spot in the initial time of action (switching on) of the laser. 
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Fig. i. Graph of the dependence 
0~(0, 0, Fo)/Ki = f(Fo), Eq. (23), 
for p = i for the central point of 
the heated spot (r = z = 05. 

For Fo < 0.08 (or more exactly, for Fo § 0) the value of the relative excess temperature 
at the cente~ of the heated spot can be written in the form 

0~(0, 0, Fo) = p arctg(2~'F-o). (26) 
Ki V ~  

The last expression can be written more simply if we bear in mind that for small Fo the value 
of the function (2/~ = 2 F/~o. 

Thus, for small Fo the dependence of excess temperature at the center of the heated spot 
of the surface of a nontransparent semiinfinite surface, heated by a laser source (of constant 
power) corresponds to the classical formula for determining the desired temperature with heat- 
ing of a massive body by an arc heat source of constant power (with p = i) [4, 9, i0]: 

2p~0VT (27) 
71 (o, o, ~) - To = O~ (0, O, T) - b V E  

where b = % / r  the  t he rma l  a c t i v i t y  of  the  n o n t r a n s p a r e n t  body,  

Depending on the  knowledge of  the  p h y s i c a l  (o r  t h e r m o p h y s i c a l )  p r o p e r t i e s  of  the  t e s t  ob-  
J e c t  ( p r e s e n c e  of  s p e c i f i c  d a t a  on t h e r m o p h y s i c a l  p r o p e r t i e s ,  r e f l e c t a n c e  or  a b s o r p t a n c e )  on 
the  b a s i s  of  the  fo rmulas  p r e s e n t e d  t h e r e  a r e  numerous p o s s i b l e  v a r i a n t s  ( i . e . ,  methods) f o r  
c a l c u l a t i n g  the  d e s i r e d  p a r a m e t e r s .  By way of example we s h a l l  c o n s i d e r  some of  them. I f  
we know the  t he rma l  a c t i v i t y  of  t he  body and the  v a l u e  of  the  r a d i a t i v e  i n t e n s i t y  wo(W/m2), 
then  t he  a b s o r p t a n c e  i s  p = br  0, x ) / ( 2 w o ~ ) .  For known v a l u e s  of  p and wo the  v a l u e  
of  the  the rma l  a c t i v i t y  can be c a l c u l a t e d  from the  fo rmula  b = 2P~-~/2wor 0, T) .  

I f  we s t a r t  from Eq. (26 ) ,  t hen  f o r  known v a l u e s  o f  the  Ki and Fo numbers t h e  a b s o r p t a n c e  
i s  p = e~(0 ,  0, ~){ '~Ki-X/arc tg  (2r  For known v a l u e s  of  Fo and p we can de t e rmine  the  
v a l u e  of  the  K i r p i c h e v  number Ki = V~p~-~0~(0, 0, F o ) / a r c t g  (2r  For an o b t a i n e d  v a l u e  of  
Ki and known wo, r o ,  To, we can d e t e r m i n e  the  t he rma l  c o n d u c t i v i t y  from the  formula  % = woro/  
(KiTo) .  There  a r e  p o s s i b l y  o t h e r  v a r i a n t s  f o r  d e t e r m i n i n g  t he  t h e r m o p h y s i c a l  p r o p e r t i e s  and 
p, b o t h  from Eqs. (23 ) ,  (26) and (275, and by us ing  the  laws f o r  development  o f  the  exces s  
t e m p e r a t u r e s  f o r  0~(0,  z ,  T) and 0=( r ,  0, ~5, r e s p e c t i v e l y ,  on the  a x i s  ( r  = 0) of  a semi-  
i n f i n i t e  body and o u t s i d e  the  h e a t e d  spo t  ( r  >ro)  on t he  s u r f a c e  o f  a n o n t r a n s p a r e n t  body 
(z = 0). 

NOTATION 

Wo(T),laser source power (W); wo(r, ~), Wo(T), intensity (density) of the laser radiation 
(W/m~); p, absorptance of the nontransparent body; Oic(r, p, s) representation of the excess 
temperatures in the corresponding regions of variation of the cylindrical coordinate (i= i, 
2); p, s, respectively, the parameters of the infinite integral Fourier cosine and Laplace 
transformations; ro, radius of a Gaussian laser beam on the surface of the nontransparent 
body; lo(x), Ko(x), 11(x), K~(x), modifie~ Bessel functions of the appropriate order; r, z, 
and ~, cylindrical coordinates and time; we(s), Laplace-transformed value of the specific in- 
tensity (per unit area) of the laser source; e = exp(+l); a, b, X, thermal diffusivity, therm- 
al activity, and thermal conductivity of the nontransparent body; O~(r, z, T) = T~(r, z, ~) -- 
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To, O=(r, z, r) = T2(r, z, ~) -- To, excess temperatures; To, initial temperature; err (x), 
(2n)! 

probability integral; C~ - m! (2n-- m)! ' binomial coefficients ; (3/2)~ = 2-2~ (2n ~n! I)! , Pokhgammer 

symbol; D~(x), parabolic cylinder function; A n m, Bn,m, thermal amplitudes (from the text); 
H~(x), orthogonal Hermite polynomials; wo, content (in time) density of radiation (W/m2); 
y'(n ~ 2, r2/r~), incomplete gamma funct$on; W_ (x), ~mittaker function; Ki = woro/(%To), Fo = 

K, , 
ar/ro, Kirpichev and Fourier numbers; 0~(0, 0, ~), G2(r, 0, T), dimensionless relative tempera- 
tures; L~(x), Laguerre polynomial. 
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NUMERICAL ANalYSIS OF FUNCTIONALLY INTEGRATED VLSIC ELEMENTS 

TAKING INTO ACCOUNT HEAT EFFECTS. 

II. METHOD AND PROGRAM 

I. I. Abramov and V, V. Kharitonov UDC 621.382.82.001:519.95 

The program and method of implementation of a discrete, multidimensional physical- 
topological model, taking into account heat effects, are described. 

After analyzing construction of a discrete physical-topological model of functionally 
integrated VLSIC elements taking into account heat effects [i] we shall now present a method 
for implementing it and we shall describe a universal program. 

Method for Selecting the Starting Approximation. The method is based on the solution of 
a truncated system of equations derived from the starting system (Eqs. (1)-(8) from [I]) with 
the help of a number of physical assumptions. The key assumption is the assumption that the 
temperature is constant over the structure of an element. This means that self-heating of 
the element is neglected in the starting approximation. As a result, Eq. (6) or [i] need not 
be solved. 

The effect of the temperature of the surrounding medium must, however, be taken into ac- 
count. Because of the adopted physical assumptions the equations for the current densities 
can be written in a different form: 

jp = - -  q~p (Too) p v ~ ,  (1) 

i~ =--q~n(Voc) nv$n" (2) 
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